Logotip INSTRUIRAJ ME
Napis INSTRUIRAJ ME
... matematični peskovnik nalog s postopki za osnovnošolske in srednješolske programe
4.0 od 5.0 [ #48 ]
Realna števila
Kvadratni in kubični koren

Pri kvadratnem in kubičnem korenu ponovimo osnovnošolska pravila korenjenja, spoznamo pojem delno korenjenje in racionalizacija imenovalca.

imUČBENIK / zakup dostopa do podpoglavja 16,50 € z DDV

Koda izdelka: 01-05-01

Ob zakupu podpoglavja 'Kvadratni in kubični koren' prejmete dostop do rešenih nalog s postopki in video razlag, ki so trenutno na voljo. Zakupljeno podpoglavje lahko, na željo naročnika, prejemete tudi v PDF obliki.

V okviru zakupa podpoglavja vam je za pomoč in vprašanja na voljo osebni inštruktor.
Pomoč zajema dodatno razlago zakupljenih nalog v kolikor je to potrebno.

Kako dodam podpoglavje v imUČBENIK?

sklopi nalog
26
primeri s postopki
165
video teorije
0
video primeri
52
Potrebuješ individualno pripravo ali izboljšuješ oceno?

Nudimo individualno reševanje in razlago težjih primerov nalog za izboljševanje ocene ali pripravo na višji nivo mature. Individualno pomoč nudi prof. matematike.

Podpoglavje vsebuje preko 139 min video razlag teorije in rešenih primerov nalog s postopki.
Vse video razlage, ki so trenutno na voljo pri podpoglavju, so razvidne spodaj.
Video teorija v pripravi ...
Izračunaj #1a

Izračunajmo kvadratni koren števila 16.

Izračunaj #1b

Lahko v realnem izračunamo kvadratni koren števila -4?

Izračunaj #1e

Izračunajmo kvadratni koren števila 0,09.

Odkleni dostop: 16,50 €

Zakupi in imej nemoten dostop do vseh video vsebin in nalog s postopki, ki so trenutno na voljo v izbranem podpoglavju.

Izračunaj #1f

Izračunajmo kubični koren števila 27.

Izračunaj #1g

Izračunajmo kubični koren števila -1000.

Delno koreni #3a

Pri računanju kvadratnega korena števila 8, delno korenimo.

Delno koreni #3c

Delno koreni kvadratni koren števila 54.

Delno koreni #3e

Delno koreni kubični koren števila 16.

Delno koreni #3g

Delno koreni kubični koren števila -48.

Delno koreni #4a

Delno koreni dani izraz.

Delno koreni #4d

Delno koreni dani izraz.

Delno koreni #4f

Delno koreni dani izraz.

Delno koreni #4i

Delno koreni dani izraz.

Delno koreni #5a

Delno koreni in poračunaj.

Delno koreni #5b

Delno koreni in poračunaj.

Delno koreni #5i

Delno koreni in poračunaj.

Natančno izračunaj #6a

Pri računanju ponovimo delno korenjenje.

Natančno izračunaj #6d

Najprej poračunamo vsoto oz. razliko pod kvadratnim korenom.

Natančno izračunaj #6e

Ko računamo, moramo upoštevati pravila računanja s kvadratnimi koreni.

Natančno izračunaj #6f

Pri računanju začnemo z notranjimi koreni.

Poenostavi #7a

Pri poenostavljanju si pomagamo s formulo kvadrat razlike dvočlenika.

Poenostavi #7b

Oklepaje dpravimo tako, da pomnožimo vsak člen z vsakim.

Poenostavi #7c

Oklepaje dpravimo tako, da pomnožimo vsak člen z vsakim.

Poenostavi #7d

Pri nalogi najprej delno korenimo, nato pa poračunamo.

Poenostavi #7e

Ko računamo, moramo upoštevati pravila računanja s kvadratnimi koreni.

Poenostavi #7f

Da bo naloga lažja, najprej delno korenimo.

Poenostavi #7g

Pri nalogi si pomagamo s formulama razlike kvadratov in kvadratom razlike dvočlenika.

Poenostavi #7j

Pri nalogi si pomagamo s formulama razlike kvadratov in kvadratom razlike dvočlenika.

Delno korenjenje pri tretjem korenu #8a

S pomočjo kvadriranja in drugega matematičnega znanja, poračunamo izraz.

Racionaliziraj imenovalec #9a

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Racionaliziraj imenovalec #9c

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Racionaliziraj imenovalec #9f

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Racionaliziraj imenovalec #9k

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Racionaliziraj imenovalec #9m

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Racionaliziraj imenovalec #9n

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Racionaliziraj imenovalec #9o

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Racionaliziraj imenovalec #9p

Imenovalec racionaliziramo s pomočjo razširjanja ulomka.

Natančno izračunaj #10g

Pri računanju si pomagamo z racionalizacijo imenovalcev.

Poračunaj #11a

Pri računanju si pomagamo z racionalizacijo imenovalcev.

Poračunaj #11d

Poenostavi produkt kvadratnih korenov.

Poenostavi #12b

Poenostavi produkt kubičnih korenov.

Poenostavi #12e

Poenostavi produkt in kvocient kubičnih korenov.

Poenostavi #12f

Pri danem primeru ponovimo racionalizacijo imenovalca ter kvadrat ralike dvočlenika in poenostavljanje produktov večih korenov.

Izračunaj vrednost izraza #16

Pri poenostavljanju izraza najprej ponovimo pravila potenc s celimi eksponenti, nato pa še racionalizacijo imenovalca.

Kvadrat vsote dvočlenika #18a

Kvadrat vsote dvočlenika v naslednji nalogi poveže kvadriranje in produkt kvadratnega korena.

Poračunaj izraz #18e

V naslednjem izrazu srečamo vsoto dveh korenov na 4 in najdemo namig kako ga najlažje poenostaviti.

Produkt dvočlenika in kvadratnega korena #19a

Pri tej na videz "čudni" nalogi si lahko pomagamo le tako, da dvočlenik, ki je pomnožen korenu "damo pod koren".

Odpravi dvojni koren #20

Z razumevanjem kvadrata dvočlenika pod korenom zapišemo izraz kot kvadrat dvočlenika. Kvadrat in koren se okrajšata in s tem se znebimo enega izmed obeh korenov.

Dokaži #13a

Pri dokazu moramo poračunati produkt dvočlenika in kubičnega korena. Pri poenostavljanju si pomagamo tako, da dvočlenik, ki je pomnožen tretjemu korenu "damo pod koren".

Razstavi izraz #23a

Pri razstavljanju danega izraza si pomagamo z razliko kvadratov.

Reši enačbo #25g

Čeprav v enačbi nastopajo koreni, se moramo zavedati, da nas zanima koliko je x in ga poskušamo izraziti.

Reši težjo enačbo #26

Pri reševanju dane enačbe ponovimo potence s celimi eksponenti ter kako zapišemo decimalno število (z neskončnim periodičnim decimalnim zapisom) v obliki ulomka.

Jakob Kršljin Stojić22.05.2022 12:13:51

Imam vprašanje glede 8. naloge, v primeru c): v nalogi je uporabljeno periodično število 0,1363636...; V rešitvah ste uporabili 1,136363636... namesto 0,1363636...
9. naloga, primera g) in k) imata podobno drobno napako: g) - zapisali ste, da je 5² = 35, kar ne drži (5*5 = 25) in pri k) primeru ste izpustili 3 pred prvim korenom (torej ni rešitev -√2 ... , ampak -3√2 ...
Drugače pa moram pohvaliti vašo spletno stran, ki je urejena in enostavna za uporabo. Tudi pri zapisu postopkov reševanja ste zelo natančni in v video razlagah vse lepo razložite, kar mi zelo pomaga pri razumevanju in utrjevanju snovi.
Nič hudega, če se tu pa tam pojavi kje kakšna napaka, saj včasih še jaz narobe samo prepišem nalogo :).
Lep pozdrav, Jakob

Ekipa instruiraj me22.05.2022 14:37:41

Pozdravljen Jakob!

Hvala za komentar in za opozorilo na napake. Smo jih pregledali in odpravili. S hvaležnostjo bomo veseli vsakega komentarja, ki pomaga k izboljšanju uporabniške izkušnje in odpravljanju vsakršnih napak.

Lep pozdrav, ekipa instruiraj me

 

Spletne stran uporablja piškotke